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Technical note
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bstract

tarting with non-stoichiometric Zr–B C powder mixture ZrB –ZrC matrix composites with SiC particulate addition have been made. It was
4 2

ound that variable amounts (5–25 vol%) of SiC could be incorporated and reactively hot pressed (RHPed) to relative densities of 97–99% at
400–1500 ◦C. This technique has the potential to fabricate ZrB2-based matrices at low temperatures with a variety of reinforcements whose
omposition and volume fraction are not limited by stoichiometric considerations. The hardness of the composites is in the range of 17–22 GPa.

2010 Elsevier Ltd. All rights reserved.
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. Introduction

Refractory transition metal borides (ZrB2, HfB2) in combi-
ation with SiC are candidates for use in oxidizing atmospheres
t temperature in excess of 1900 ◦C.1–10 While sintering tem-
eratures of pre-synthesized powders have generally been in
xcess of ∼1900 ◦C, in recent times reactive hot pressing (RHP)
as been successfully adapted to produce ZrB2–SiC composites
t temperatures that have progressively reduced from 1900 to
600 ◦C. The reactants and detailed process schedules vary11–20

ut a common feature in all low temperature processing is the
se of elemental silicon and a source of carbon to produce SiC
n situ. Such methods constrain the volume fraction of SiC to
he stoichiometry of the reaction. In addition, changing to a dif-
erent reinforcement would require separate optimization of the
eaction.

In contrast, we have shown recently that ZrB2–ZrCx compos-
tes could be RHPed to high relative densities at 1200–1600 ◦C
y exploiting the plasticity (transient or otherwise) of a carbon-

eficient ZrC.21,22 In particular, it was shown that as ‘x’
ecreased from 1 to 0.67, the necessary process temperature
educed from 1600 to 1200 ◦C. The present work seeks to deter-
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ine whether such a densifiable matrix can act as a host to
articulate inclusions, in this case SiC, with a view to being able
o fabricate composites wherein the size and volume fraction of
he reinforcement can be easily changed.

. Experimental procedure

Starting with Zr–B4C powder mixtures the ZrB2–ZrCx–SiCp
0–25 vol%) composites with different amounts of SiCp are fab-
icated according to the following reaction:

.5Zr + B4C + SiC(040–25 vol%) → 2ZrB2 + 1.5ZrC∼0.67

+ SiC(041–25 vol%) (1)

The volume fractions of ZrB2 and ZrCx according to reaction
1) are ∼62% and 38%, respectively when SiC is absent and the
heoretical density of the composite is 6.26 g/cm3. As the SiC
ontent increases from 0% to 25%, the theoretical density of the
omposite reduces from 6.26 to 5.53 g/cm3.

.1. Materials, processing and characterization
The details of raw materials, powder processing and hot
ressing schedules have been extensively reported earlier21,23

nd are only briefly reproduced here. Powders used were: Zr
f 2–10 �m (M/s Yashoda Special Metals, Hyderabad, India),
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Table 1
Experimental conditions, density and hardness of the ZrB2–ZrCx–SiCp composites.

Sl no. Experimental conditions (MPa/◦C/min) Phases Lattice parameter of ZrC (Å)a Density-g/cm3 (% RD) Hardness (GPa)

ZrB2–ZrCx–SiCp (ZBCSCp-C)
1 40/1400/30 – (1 wt% Ni) ZrB2, ZrCx 4.682 6.20 (99.9) 22 ± 1.0
2 40/1400/30 – 5 vol% SiC (1 wt% Ni) ZrB2, ZrCx, SiC 4.686 6.10 (99.9) 22.3 ± 1.8
3 40/1400/30 – 10 vol% SiC (1 wt% Ni) ZrB2, ZrCx, SiC 4.686 5.82 (97.8) –
4 40/1400/30 – 15 vol% SiC (1 wt% Ni) ZrB2, ZrCx, SiC 4.686 5.53 (95.4) 17.2 ± 2.9
5 40/1500/30 – 20 vol% SiC ZrB2, ZrCx, SiC 4.686 5.48 (97.3) 17.4 ± 0.6

ZrB2–ZrCx–SiCp (ZBCSCp-F)
6 40/1500/30 – 20 vol% SiC ZrB2, ZrCx, SiC 4.686 5.61 (99) 17.4 ± 1.1
7 4.686 5.34 (97.5) 20.7 ± 1.3
8 4.687 5.33 (97) –
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40/1500/30 – 25 vol% SiC ZrB2, ZrCx, SiC
40/1500/30 – 25 vol% SiC (1 wt% Ni) ZrB2, ZrCx, SiC

a Error bar ± 0.001, RD- relative density.

4C of ∼10 to 20 �m (M/s Boron Carbide India Ltd. Mum-
ai, India) and ∼1 to 7 �m (M/s Alfa-Aesar, USA), �-SiC
1 �m (M/s Alfa-Aesar, USA) and Ni of ∼4 �m (M/s INCO,
ondon, UK). The required amounts of powders were mixed

n a rotatory ball mill in ethanol with ZrO2-8 mol% Y2O3
illing media for 24 h in a plastic bottle and dried at ∼100 ◦C

or 5 h. The composites produced with coarse (10–20 �m)
nd fine (1–7 �m) B4C powders are hereafter referred to as
BCSCp-C and ZBCSCp-F, respectively. The dried powder mix-

ures were filled in a graphite die and RHP experiments were
onducted at 40 MPa, 1400–1500 ◦C for 30 min. Standard pro-
edures described earlier21–23 were used to determine density,
icrostructural features and precision lattice parameters.

. Results and discussion

The processing conditions, phases formed, lattice parameter
f ZrC and densities of the composites are given in Table 1.

.1.1. ZBCSCp-C composites

The X-ray diffraction (XRD) patterns of the
rB2–ZrCx–SiCp (5–15 vol%) composites (ZBCSCp-C)
roduced with 1 wt% Ni at 40 MPa, 1400 ◦C for 30 min are
hown in Fig. 1. The peaks corresponding to ZrB2, ZrCx and
iCp phases with very weak peaks of m-ZrO2 are seen in
ll the composites. The lattice parameter of ZrCx∼0.67 in the
omposites is 4.686 ± 0.001 Å, which is slightly larger than
hat reported in our earlier work (4.682 Å) for ZrB2–ZrCx∼0.67
omposite21 and for monolithic ZrCx∼0.67

22 produced by RHP.
he relative density (RD) at 1400 ◦C reduces from 99.9%
t 5 vol% SiC to 95.4% at 15 vol%. An increase in pressing
emperature to 1500 ◦C results in a density of 97.3% with
0 vol% SiC.

Typical scanning electron micrographs of the 5 vol% and
5 vol% SiCp composites are shown in Fig. 2. The estimated vol-
me fractions of SiC, according to image analysis of the 5% and
5% samples, are 4.7 ± 0.4 and 15.3 ± 1.2, while correspond-

ng porosity estimated using optical micrographs (not shown) are

1% and 5%, respectively. These are consistent with the density
easurements and also indicate that there has not been signifi-

ant loss of SiC by reaction with Zr. The grain sizes of the ZrB2

r

d
p

ig. 1. The X-ray diffraction patterns of the ZBCSCp-C composites with differ-
nt fractions of SiCp fabricated with 1 wt% Ni at 40 MPa, 1400 ◦C for 30 min:
a) 0 vol% SiC, (b) 5 vol% SiC and (c) 15 vol% SiC.

nd ZrC are ∼1 to 2 �m, while SiC agglomerates of 0.83–6 �m
ere observed. The hardness of the composites decreased from
2 to 17 GPa as the RD of the composite decreased from 99.9%
o 95.4%.

.1.2. ZBCSCp-F composites

The use of fine B4C powder demonstrates (Fig. 3) that up to
98% RD can be achieved with 25 vol% SiC. The XRD patterns

nd the lattice parameter of the ZrCx are similar to those with
oarse B4C. Our earlier work21 indicated addition of Ni to aid the
ompletion of the reaction between Zr and B4C, but without any
ffect on densification. Similarly there appears to be no change in
ensification (Fig. 3 and Table 1) when Ni is absent in the present
xperiment (25 vol% SiCp, 1500 ◦C). Typical SEM micrographs
f the 20 vol% and 25 vol% SiCp composites shown in Fig. 4,
ndicate a reasonably uniform distribution of SiCp though there
s some tendency for particle clustering (0.14–6 �m) within the
rB2–ZrC matrix. The densities attained are comparable to those

eported for ZrB2–SiC–ZrC composites made by other routes
hat required temperatures ≥1600 ◦C.15–18,20 The hardness of
he 20 vol% and 25 vol% SiCp composites is 17 and 20 GPa,

espectively.

Thus, it is clear that RHP of non-stoichiometric Zr–B4C pow-
er mixture can be used to densify composites with variable SiC
articulate content at a temperature that is low enough to avoid
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Fig. 2. Scanning electron micrographs of the ZBCSCp-C composites produced
with 1 wt% Ni at 40 MPa, 1400 ◦C for 30 min (a) 5 vol% SiC and (b) 15 vol%
S
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iC. The grey clusters represent SiC particulates while the matrix reveals a
arker ZrB2 and a lighter ZrCx phase.

egradation of the particulate. There is potential to exploit this
interable matrix of ZrB2–ZrCx to include other reinforcements,
uch as suitably protected carbon fibres or other refractory car-

ides/borides.

ig. 3. The relative density (%) versus SiCp content plot of the composites
ZBCSCp-C: (�) 1400 ◦C with 1 wt% Ni, (�) 1500 ◦C without Ni and ZBCSCp-
: (�) 1500 ◦C without Ni and (�) with 1 wt% Ni).
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ig. 4. SEM micrographs of the ZBCSCp-F (composites produced without Ni
t 40 MPa, 1500 ◦C for 30 min: (a) 20 vol% SiC and (b) 25 vol% SiC.

. Conclusions

It is possible to produce ZrB2–ZrCx–SiCp composites at tem-
eratures as low as 1500 ◦C using non-stoichiometric Zr–B4C
owder mixtures with up to 25 vol% SiC particulates. For any
iven powder mixture, final relative densities of the composites
ecreased monotonically with particulate content. Fine reactant
owders promote higher relative densities. The hardness of the
omposites is in the range of ∼17 to 22 GPa.
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